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Abstract
Unitary representations of kinematical symmetry groups of quantum systems
are fundamental in quantum theory. In this paper we propose their
generalization to quantum kinematical groups. Using the method, proposed
by us in a recent paper (Arratia O and del Olmo M A 2001 Preprint
math.QA/0110275) to induce representations of quantum bicrossproduct
algebras, we construct the representations of the family of standard quantum
inhomogeneous algebras Uλ(isoω(2)). This family contains the quantum
Euclidean, Galilei and Poincaré algebras, all of them in (1 + 1) dimensions.
As byproducts we obtain the actions of these quantum algebras on regular
co-spaces that are an algebraic generalization of the homogeneous spaces and
q-Casimir equations which play the role of q-Schrödinger equations.

PACS numbers: 03.65.Fd, 02.20.Uw, 02.40.Hw

1. Introduction

The role played by the unitary representations of the (kinematical) symmetry groups of quantum
physical systems is well known. One can classify the elementary systems [1] according to
the unitary representations or obtain their corresponding Schrödinger equations using local
representations [2]. In recent years we have been involved in a programme directed towards
the construction of a theory of induced representations for quantum algebras [3–6]. Our aim
is to obtain a quantum counterpart to the programme that Wigner started in 1939 for Lie
groups [1], which has been so fruitful in quantum physics.

Kinematical groups such as Poincaré and Galilei, whose physical interest is not in any
doubt, have the structure of a semidirect product. The quantum version of this kind of structure
for quantum groups is that of the bicrossproduct [7, 8]. In this case a quantum Lie algebra
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inherits the ‘semidirect’ structure in the algebra sector and the algebra of the functions also
has a semidirect product structure in the coalgebra sector.

It is worth mentioning that there exist several types of deformations of kinematical
algebras, most of them sharing the bicrossproduct structure. In a first approximation we
can consider standard and non-standard deformations, which are related to the fact that the
associated classical r-matrix is quasi-triangular or triangular, respectively [9]. Inside the
former we find ‘time-like’ deformations, in the sense that the generator of the time translations
is primitive and the deformation parameter has dimensions of the inverse of time. This is
the case for the κ-Poincaré [10] and κ-Galilei algebras [11], with κ denoting the deformation
parameter. These κ-algebras have a bicrossproduct structure, which was pointed out in [12]
for the κ-Poincaré algebra and in [13] for the κ-Galilei algebra.

There is now another standard ‘space-like’ deformation, since a space-translation
generator remains primitive and the deformation parameter has dimensions of length, in
contrast to the k-deformations. To perform these q-deformations the framework of the
Cayley–Klein (CK) pseudo-orthogonal algebras [14] was used, which includes inhomogeneous
algebras such as the Galilei, Poincaré and Euclidean algebras, in order to obtain a general and
unified approach. The quantum deformation of these CK algebras in (1 + 1) dimensions was
performed in [15]. The generalization to higher dimensions was presented in [16–18]. The
deformation parameter of these q-algebras has dimensions of length. Moreover, these quantum
CK inhomogeneous algebras have a bicrossproduct structure as studied in [19]. Incidentally,
the κ-Poincaré algebra also appears inside the q-CK family after appropriately choosing the
parameters and the ‘physical’ basis of the algebra [19].

The non-standard deformation of the Poincaré algebra in (1 + 1) dimensions appeared for
the first time in [20], and the non-standard (1 + 1) Galilei–Heisenberg algebra was introduced
in [21]. Both non-standard kinematical algebras also have a bicrossproduct structure, as
displayed in [13]. Following with the above simile this non-standard deformation of the
Poincaré algebra can be seen as a ‘light-like’ deformation if one considers a null-plane
basis (see [22–24], respectively). All these quantum ‘null-plane’ Poincaré algebras share
the bicrossproduct structure that was displayed in [13] for the (1 + 1) case and in [25] for
higher dimensions. The non-standard Galilei algebras also have a bicrossproduct structure.

The interest of the quantum versions of the kinematical groups and algebras from a
physical point of view is as ‘quantum’ generalizations of the symmetries of the physical
space–time in a noncommutative framework. The study of these quantum symmetries
and their representations generalizes the Wigner programme inside the perspective of the
noncommutative geometry [26], whose importance in physics is increasing.

For these groups having the structure of a semidirect product, Mackey’s method [27]
provides their unitary representations by induction from the representations of one of their
subgroups. In this paper we study the induced representations for some quantum kinematical
algebras acting in spaces of (1 + 1)-dimensions using the CK approach, which allows us a
unified point of view for all of them. The fact that these quantum CK inhomogeneous algebras
have a bicrossproduct structure, which all of them share, simplifies the construction procedure
of their induced representations and also gives a unified model for all of them.

The induction procedure formulated by us presents a strong algebraic character because
we made use of objects such as modules, comodules, etc, which, from our point of view, are the
appropriate tools to work with the algebraic structures characteristic of the quantum algebras
and groups.

In the literature we can find some attempts to develop techniques that generalize the
Mackey method [27] of induced representations for semidirect product groups to the quantum
case. For instance, in [28] Dobrev presented a method for constructing representations of
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quantum groups near to ours, since both methods emphasize the dual case, closer to the classical
one, and the representations are constructed in the algebra sector. Other authors [29–33] have
also extended the induction technique to quantum groups but constructing corepresentations,
i.e. representations of the coalgebra sector.

The organization of this paper is as follows. In section 2 we present a mathematical outline
of the concepts that we will use throughout the paper in order to unify notation. Section 3
is devoted to summarizing the theory of induced representations of quantum bicrossproduct
algebras. We begin to study the induction problem taking into account the deep relation between
modules and representations obtaining, in some sense, deeper results from a geometric point
of view using the concept of regular co-space. Since our aim is to construct the induced
representations of certain quantum inhomogeneous CK algebras, section 4 is devoted to
briefly describing these q-algebras. In section 5 we construct, in some detail, the induced
representations following the method developed in section 3. We start with the computation of
the flow associated with the action of the generator of one of the factors of the bicrossproduct
over the other. After, we are able to determine the regular co-spaces determining the induced
representations that we obtain below in an explicit way. Moreover, q-Casimir equations are
also obtained.

2. Preliminaries

Let H = (V ; mη; �ε; S) be a Hopf algebra with underlying vector space V over the field K

(C or R), multiplication m : H ⊗ H → H , coproduct � : H → H ⊗ H , unit η : K → H ,
counit ε : H → K and antipode S : H → H .

The algebras involved in this work are infinite-dimensional algebras but finitely generated,
for this reason we will use a multi-index notation [6]. Let A be an algebra generated
by the elements (a1, a2, . . . , ar) such that the ordered monomials an = a

n1
1 a

n2
2 · · · anr

r

(n = (n1, n2, . . . , nr) ∈ Nr ) form a basis of the linear space underlying A. An arbitrary
product of generators of A is written in a normal ordering if it is expressed in terms of the
(ordered) basis (an)n∈Nr . The unit of A, 1A, is denoted by a0 (0 ∈ Nn). Multi-factorials and
multi-deltas are defined by

l! =
n∏

i=1

li!, δm
l =

n∏
i=1

δ
mi

li
. (2.1)

A pairing between two Hopf algebras, H and H ′, is a bilinear mapping 〈·, ·〉 : H×H ′ → K

verifying some defining relations [9]. The pairing is said to be left (right) nondegenerate if
[〈h, ϕ〉 = 0, ∀ϕ ∈ H ′] ⇒ h = 0 ([〈h, ϕ〉 = 0, ∀h ∈ H ] ⇒ ϕ = 0). The pairing is said to be
nondegenerate if it is simultaneously left and right nondegenerate. Two Hopf algebras and a
nondegenerate pairing, (H, H ′, 〈·, ·〉), determine a ‘nondegenerate triplet’. The bases (hm) of
H and (ϕn) of H ′ are dual with respect to the nondegenerate pairing if

〈hm, ϕn〉 = cnδ
m
n , cn ∈ K − {0}. (2.2)

Given a nondegenerate triplet and the map f : H → H , we shall say that the map
f † : H ′ → H ′, defined by

〈h, f †(ϕ)〉 = 〈f (h), ϕ〉, (2.3)

is the adjoint map to f with respect to 〈·, ·〉.
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We will use the endomorphisms of ‘multiplication’ (denoted again by h and ϕ) and ‘formal
derivation’ ( ∂

∂h
≡ ∂h and ∂

∂ϕ
≡ ∂ϕ). They verify that h† = ∂ϕ and ϕ† = ∂h. The situation is

similar when H and H ′ are finitely generated. The definition of the formal derivative is

∂

∂hi

(h
l1
1 · · · hli

i · · · hln
n ) = lih

l1
1 · · · hli−1

i · · · hln
n . (2.4)

The generalization of the ‘multiplication’ operators is not straightforward if the algebras are
non-commutative. To avoid any confusion the formal operators associated with the generators
hi will be denoted using a bar over the corresponding symbol. The action of these operators is

hi(h
l1
1 · · · hli

i · · · hln
n ) = h

l1
1 · · · hli+1

i · · · hln
n . (2.5)

For the elements ϕi ∈ H ′ the ‘multiplication’ and derivative operators are defined in a similar
way. Note that if H (resp. H ′) is commutative then hi (resp. ϕi) acts as a multiplication
operator, but this is no longer true when the algebra is noncommutative. The adjoint operators

are h
†
i = ∂ϕi , ϕi† = ∂hi

. The commutation relations for hi and ∂hi
(similar for ϕi and ∂ϕi ) are

[∂hi
, hj ] = δij , [hi, hj ] = 0, [∂hi

, ∂hj
] = 0. (2.6)

Let (V , α, A) be a triad composed of a unital and associative K-algebra A, a K-vector
space V and a linear map (called action) α : A ⊗K V → V (α(a ⊗ v) = a 
 v). It is said that
(V , α, A) (or (V , 
, A)) is a left A-module if

a 
 (b 
 v) = (ab) 
 v, 1 
 v = v, ∀a, b ∈ A, ∀v ∈ V. (2.7)

Dualizing an A-module a comodule is obtained. The triad (V , �, C), where C is an associative
K-coalgebra with counit, V a K-vector space and �: V → C ⊗K V (v �= v(1) ⊗ v(2)) a
(linear map) coaction, is said to be a left C-comodule if

v(1)
(1) ⊗ v(1)

(2) ⊗ v(2) = v(1) ⊗ v(2)
(1) ⊗ v(2)

(2), ε(v(1))v(2) = v, ∀v ∈ V, (2.8)

with �(c) = c(1) ⊗ c(2) denoting the coproduct of the elements of C.
A morphism of the left A-modules, (V , 
, A) and (V ′, 
′, A), is a linear map, f : V → V ′,

equivariant with respect the action, i.e.

f (a 
 v) = a 
′ f (v), ∀a ∈ A, ∀v ∈ V. (2.9)

A linear map f : V → V ′ between two C-comodules, (V , �, C) and (V ′, �′, C) is a morphism
if

v(1) ⊗ f (v(2)) = f (v)(1)′ ⊗ f (v)(2)′ , ∀v ∈ V. (2.10)

If a bialgebra acts or coacts on a vector space equipped with an additional structure (algebra,
coalgebra or bialgebra) some compatibility relations for the action may be required [8].

Let A, B, C be an algebra, a bialgebra and a coalgebra, respectively. The left module
(A, 
, B) is a B-module algebra if mA and ηA are morphisms of B-modules. That is, if

b 
 (aa′) = (b(1) 
 a)(b(2) 
 a′), b 
 1 = ε(b)1, ∀b ∈ B, ∀a, a′ ∈ A. (2.11)

A left B-module (C, 
, B) is a B-module coalgebra if �C and εC are morphisms of B-modules,
i.e. if

(b 
 c)(1) ⊗ (b 
 c)(2) = (b(1) 
 c(1)) ⊗ (b(2) 
 c(2)), εC(b 
 c) = εB(b)εC(c),

∀b, c ∈ B.

A left B-comodule (C, �, B) is said to be a B-comodule coalgebra if �C and εC are morphisms
of B-comodules, i.e.

c(1) ⊗ c(2)
(1) ⊗ c(2)

(2) = c(1)
(1)c(2)

(1) ⊗ c(1)
(2) ⊗ c(2)

(2), c(1)εC(c(2)) = (ηB ◦ εC)(c).
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A left B-comodule (A, �, B) is a B-comodule algebra if mA and ηA are morphisms of
B-comodules. Explicitly

(aa′)(1) ⊗ (aa′)(2) = a(1)a
′
(1) ⊗ a(2)a

′
(2), 1A �= 1B ⊗ 1A. (2.12)

The triad (B ′, 
, B) is a left B-module bialgebra if simultaneously it is a B-module algebra
and a B-module coalgebra; (B ′, �, B) is a left B-comodule bialgebra if it is a B-comodule
algebra and a B-comodule coalgebra.

A regular module (comodule) is an A-module (C-comodule) whose vector space is the
underlying vector space of the algebra A (coalgebra C). The action (coaction) is defined
in terms of the algebra product (coalgebra coproduct). If B is a bialgebra, the regular
B-module (B, 
, B), whose regular action is b 
 b′ = bb′, is a module coalgebra. The
regular module (B∗, , B), obtained by dualization, is a module algebra with regular action
ϕ  b = 〈ϕ(1), b〉ϕ(2) with b ∈ B, ϕ ∈ B∗.

Let K and L be two Hopf algebras, with (L, , K) a right K-module algebra and (K, �, L)

a left L-comodule coalgebra. The tensor product K ⊗ L is equipped simultaneously with the
semidirect structures of the algebra K 
< L and coalgebra K >�L. If some compatibility
conditions are verified K 
< L and K >�L determine a Hopf algebra called the (right–left)
bicrossproduct and denoted by K 
�L [7, 8].

Let K and L be two Hopf algebras and (L, 
, K) and (K, �, L) a left K-module algebra
and a right L-comodule coalgebra, respectively, verifying the corresponding compatibility
conditions. Then L > K and L �< K determine a Hopf algebra, L � K, called the (left–right)
bicrossproduct.

These two bicrossproduct structures are related by duality: if K and L are finite-
dimensional bialgebras and the K-module algebra (L, , K) and the L-comodule coalgebra
(K, �, L) verify the compatibility conditions determining the bicrossproduct K 
�L, then
(K 
�L)∗ = K∗ � L∗.

It has been proved in [3] that dual bases and ∗-structures over bicrossproduct Hopf algebras
may be constructed when the corresponding bases and ∗-structures of the bicrossproduct factors
are known. Thus, let H = K 
�L be a bicrossproduct Hopf algebra and (K, K∗, 〈·, ·〉1) and
(L, L∗, 〈·, ·〉2) be nondegenerate triplets, then the expression

〈kl, κλ〉 = 〈k, κ〉1〈l, λ〉2 (2.13)

defines a nondegenerate pairing between H and H ∗. If (km) and (κm) are dual bases for K

and K∗, and (ln) and (λn) for L and L∗, then (kmln) and (κmλn) are dual bases for H and H ∗.
It can be proved that given a bicrossproduct Hopf algebra, H = K 
�L, such that K and

L are equipped with ∗-structures verifying the compatibility relation (l  k)∗ = l∗  S(k)∗,
there is a ∗-structure on the algebra sector of H determined by

(kl)∗ = l∗k∗, k ∈ K, l ∈ L. (2.14)

3. Induced representations of bicrossproduct algebras

The main results regarding the theory of induced representations for quantum bicrossproduct
algebras will be summarized in this section (see [3–6] for a complete description of induced
representations of quantum algebras).

As we have seen in the previous section, different actions are involved, and henceforth
we will denote them by the following symbols (or their symmetric for the corresponding right
actions and coactions): 
 (�) (bicrossproduct actions (coactions)), � (induced and inducting
representations) and �, ≺ (regular actions).
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Let (H, H, 〈·, ·〉) be a nondegenerate triplet and L a commutative subalgebra of H .
Suppose that {l1, . . . , ls} is a system of generators of L which is completed with {k1, . . . , kr}
to get a system of generators of H , such that (ln)n∈Ns is a basis of L and (kmln)(m,n)∈Nr×Ns a
basis of H . Moreover, there is a generator system of H, {κ1, . . . , κr , λ1, . . . , λs}, such that
(κmλn)(m,n)∈Nr×Ns is a basis of H dual to that of H with pairing

〈kmln, κ
m′

λn′ 〉 = m!n!δm′
m δn′

n . (3.1)

In order to construct the representation of H induced by the character of L, determined
by a = (a1, . . . , as) ∈ Ks (explicitly, 1 � ln = an = a

n1
1 · · · ans

s , n ∈ Ns), we need to know
its carrier space K↑ and the action of H on it. The elements of K↑ are those of HomK(H, K)

verifying the invariance condition

f (hl) = f (h) � l, ∀l ∈ L, ∀h ∈ H. (3.2)

They can be written as

f =
∑

(m,n)∈Nr×Ns

fmnκ
mλn (3.3)

by identifying K↑ = HomK(H, K) with H via the pairing. The equivariance condition (3.2)

〈hl, f 〉 = 〈h, f 〉 � l, ∀l ∈ L, ∀h ∈ H, (3.4)

together with duality give the relation

m!n!fmn = 〈kmln, f 〉 = 〈km, f 〉an = m!fm0an. (3.5)

Hence, the elements of K↑ are

f = κψ, κ ∈ K, ψ = ea1λ1 · · · easλs , (3.6)

where K is the subspace of H generated by the linear combinations of the ordered monomials
(κm)m∈Nr . Because ψ is product of exponentials, K and K↑ are isomorphic (κ → κψ).

The action of H on K↑ is determined knowing the action over the basis elements
(κpψ)p∈Nr . Putting

(κpψ) � h =
∑

(m,n)∈Nr×Ns

[h]pmnκ
mλn, p ∈ Nr , (3.7)

the [h]pmn coefficients are evaluated by means of the duality

m!n![h]pmn = 〈(κpψ) � h, kmln〉 = 〈κpψ, hkmln〉 = 〈κpψ, hkm〉an. (3.8)

The properties of the action allow one to compute it only for the generators of H instead of
considering an arbitrary element of H . The problem reduces to writing hkm in normal ordering
to get the value of the paring in (3.8). Since in many cases this task is very cumbersome, our
objective will be to take advantage of the bicrossproduct structure to simplify the computations.

In the following we will restrict ourselves to Hopf algebras having a bicrossproduct
structure such as H = K 
� L, such that K is cocommutative and L commutative. Let us
suppose that the algebrasK andL are finite generated by the sets {ki}ri=1 and {li}si=1, respectively,
the ki are primitive and (kn)n∈Nr and (lm)m∈Ns are bases of the vector spaces underlying K and
L, respectively. Let K∗ and L∗ be the dual algebras of K and L having dual systems to those of
K and L with analogous properties to them. So, duality between H and H ∗ is given by (3.1).

We are interested in the construction of the representations induced by ‘real’ characters
of the commutative sector L. We will show that the solution of this problem can be reduced
to the study of certain dynamical systems which present, in general, a nonlinear action. The
above results can be summarized in the following theorem.
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Theorem 3.1. The carrier space of the representation of H induced by the character a of L,

1 � ln = an, a ∈ Cs , n ∈ Ns , (3.9)

is isomorphic to K∗ and is constituted by the elements of the form

κψ, κ ∈ K∗, ψ = ea1λ1 ea2λ2 · · · easλs , λi ∈ L∗. (3.10)

The induced action of the elements of H over the elements of the carrier space C↑ is given by

f � h =
∑
m∈Nr

κm

〈
h

km

m!
, f

〉
ψ, f ∈ C↑. (3.11)

To obtain the explicit action of the generators of K and L in the induced representation, let
us start by identifying L, because it is commutative, with the algebra of functions F(Rs) by the
morphism L → F(Rs), (l �→ l̃), mapping the generators of L into the canonical projections

l̃j (x) = xj , ∀x = (x1, x2, . . . , xs) ∈ Rs , j = 1, 2, . . . , s. (3.12)

This identification allows one to choose a ∗-structure keeping invariant the generators of L by

l∗j = lj , j = 1, 2, . . . , s. (3.13)

Hence, the characters of L (3.9) compatible with (3.13) are real. They can now be written as

1 � l = l̃(a), a ∈ Rs . (3.14)

Also, the right action of K on L can be carried to F(Rs). Since the generators of K are
primitive, they act by derivations on the K-module algebra of K 
� L inducing vector fields,
Xi , on Rs by

Xil̃ = l̃  ki, i = 1, 2, . . . , r. (3.15)

The flow associated with Xi , �i : R × Rs → Rs , is given by

(Xif )(x) = (Dfx,�i
)(0), (3.16)

where fx,�i
(t) = f ◦ �t

i(x) and D is the derivative operator. Thus, we can state the following
theorem that allows us to have explicit formulae for the action.

Theorem 3.2. The explicit action of the generators of K and L in the induced representation
determined in theorem 3.1 and realized in the space K∗ is given by the following expressions:

κ � ki = κ ≺ ki,

κ � lj = κl̂j ◦ �(κ1,κ2,...,κr )(a),
(3.17)

where i ∈ {1, . . . , r}, j ∈ {1, . . . , s}, the symbol ≺ denotes the regular action of K on K∗ and
�(κ1,κ2,...,κr ) = �κr

r ◦ · · · ◦ �
κ2
2 ◦ �

κ1
1 .

We can reformulate the induction procedure in terms of modules because of their deep
relation with representations [3,6]. The regular H -modules associated with a Hopf algebra H

and its dual H ∗, (H, ≺, H), (H ∗, �, H), (H, �, H) and (H ∗, ≺, H), will help us to describe
the actions as well as the carrier spaces involved in the induced representations. The modules
(H ∗, �, H) and (H ∗, ≺, H) are called co-spaces since they can be considered as an algebraic
generalization of the concept of G-space.

The commutative or cocommutative Hopf algebras are, in fact, of the form F(G) or
C[G], the group algebra of G, (or U(g)) for any group G [8]. Hence, the bicrossproduct Hopf
algebras, that we consider in this paper, can be factorized as

H = U(k) 
�F(L), H ∗ = F(K) � U(l) (3.18)

where K and L are Lie groups with associated Lie algebras k and l, respectively.
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The use of elements of H and H ∗, such as

kλ ∈ H, k ∈ K, λ ∈ F(L),

κl ∈ H ∗, κ ∈ F(K), l ∈ L,
(3.19)

instead of the standard bases of ordered monomials, allows an effective description of the H

regular modules.

Theorem 3.3. The action on each of the four regular H -modules is

(H, ≺, H) : (kλ) ≺ k′ = kk′(λ  k′), (kλ) ≺ λ′ = kλλ′;
(H ∗, �, H) : k′ � (κl) = (k′ � κ)(k′ 
 l), λ′ � (κl) = λ′(l)κl;
(H, �, H) : k′ � (kλ) = k′kλ, λ′ � (kλ) = k(λ′  k)λ;
(H ∗, ≺, H) : (κl) ≺ k′ = (κ ≺ k′)l, (κl) ≺ λ′ = κ(λ′ ◦ l̂)l;

(3.20)

where l̂ is the map, K → L(k �→ k 
 l), projecting the group K on the orbit passing through
l ∈ L such that 〈l(1), λ〉l(2) = λ ◦ l̂, for all k, k′ ∈ K , λ, λ′ ∈ F(L), κ ∈ F(K) and l ∈ L.

Note that in this theorem we have taken into account that in (U(l), �, F (L)) holds

λ � l = λ(l)l, ∀λ ∈ F(L), ∀l ∈ L. (3.21)

Now we can carry out a complete analysis of the representations of H = U(k) 
�F(L)

induced by the one-dimensional modules of its commutative sector. Note that the set of
characters of the algebra F(L) is its spectrum and, hence, the spectrum of F(L) is isomorphic
to L. Fixing an element l of L, the character is given by

1 � λ = λ(l), λ ∈ F(L). (3.22)

The carrier space C↑ of the representation of H = U(k) 
�F(L) induced by (3.22) is the set
of elements f ∈ H ∗ satisfying the condition

λ � f = λ(l)f, ∀λ ∈ F(L). (3.23)

Expanding f in terms of the bases of k and l, imposing the equivariance condition and
considering the definition of second kind coordinates λj over the group L we obtain that

f = κl, κ ∈ F(K). (3.24)

The right regular action determines the action on the induced module that can be carried
to F(K) using the isomorphism F(K) → C↑(κ �→ κl). Consequently,

κ � k = κ ≺ k, κ � λ = κ(λ ◦ l̂). (3.25)

Comparing these expressions with those of theorem 3.2, we see that the action of U(k) is
determined by the regular action. The action of F(L) is multiplicative and its evaluation is
essentially reduced to obtain the flows associated with the action of K on L derived from the
bicrossproduct structure of H .

Finally, the following theorem summarizes the induction procedure for bicrossproduct
algebras.

Theorem 3.4. Let us consider an element l ∈ L supporting a global action of the group K .
The carrier space, C↑, of the representation of H induced by the character determined by l is
the set of elements of H ∗ of the form

κl, κ ∈ F(K). (3.26)
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There is an isomorphism between C↑ and F(K) given by the map κ �→ κl. The action induced
by the elements of the form k ∈ K and λ ∈ F(L) in the space F(K) is

κ � k = κ ≺ k

κ � λ = κ(λ ◦ l̂).
(3.27)

The modules induced by l and k 
 l are isomorphic. Consequently, the induction algorithm
establishes a correspondence between the space of orbits L/K and the set of equivalence
classes of representations.

3.1. Local representations

The quantum counterpart of the local representations [2] of Lie groups can be obtained inducing
from representations of the subalgebra U(k). Given a character κ of U(k),

κ ∈ spectrumU(k) ⊂ F(K), k � 1 = κ(k), (3.28)

the carrier space, C↑, of the representation induced by κ is determined by the equivariance
condition

f ≺ k = κ(k)f, ∀k ∈ U(k) (3.29)

obtaining that the elements of C↑ are of the form

f = κl, l ∈ U(l). (3.30)

The isomorphism U(l) → C↑ (l �→ κl) allows one to realize the induced representation over
U(l)

k � l = κ(k)k 
 l, λ � l = λ(l)l. (3.31)

The local representations of the quantum extended (1 + 1) Galilei algebra [33] have been
obtained in [34].

4. Quantum isoω(2) algebras

The algebras called CK pseudo-orthogonal algebras soω1,ω2,...,ωN
(N + 1) are a family

of (N + 1)N/2 dimensional real Lie algebras characterized by N real parameters
(ω1, ω2, . . . , ωN) [14, 19]. In the ‘geometric’ basis (Jij )0�i<j�N the nonvanishing
commutators are

[Jij , Jik] = ωijJjk, [Jij , Jjk] = −Jik, [Jik, Jjk] = ωjkJij , (4.1)

with 0 < i < j < k < N and ωij = ∏j

s=i+1 ωs .
The parameters ωi , in fact, only take the values 1, 0 and −1 since the generators Jij can

be rescaled. When ωi �= 0∀i, the Lie algebra soω1,ω2,...,ωN
(N + 1) is isomorphic to some of the

pseudo-orthogonal algebras so(p, q) with p + q = N + 1 and p � q � 0. If some ωi vanish
the corresponding algebra is inhomogeneous.

In this paper we are interested in the particular case of N = 2 and ω1 = 0.
These inhomogeneous algebras so0,ω2(3) can be realized as algebras of groups of affine
transformations on R2 [14] (i.e. the Euclidean group when ω2 = 1, the Galilei group when
ω2 = 0 and the Poincaré group when ω2 = −1). In this case the generators J0i are denoted by
Pi stressing their role as translation generators. The remaining generator J12 ≡ J is associated
with compact (ω2 = 1) and noncompact rotations (Galilean and Lorentzian boosts).

The algebra so0,ω2(3), that we shall denote by isoω(2), is characterized by the commutators

[J, P1] = P2, [J, P2] = −ωP1, [P1, P2] = 0. (4.2)
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We shall use the following ‘generalized trigonometric functions’ [14, 15]:

Cω(x) = e
√−ωx + e−√−ωx

2
, Sω(x) = e

√−ωx − e−√−ωx

2
√−ω

. (4.3)

When ω < 0 (ω > 0) these expressions become the trigonometric (hyperbolic) functions. For
ω = 0 the parabolic functions C0(x) = 1 and S0(x) = x are obtained. The functions (4.3)
satisfy identities similar to those of the usual trigonometric functions. Some useful properties
that will be used in following computations are

C2
ω(x) + ωS2

ω(x) = 1,

Cω(x + y) = Cω(x)Cω(y) − ωSω(x)Sω(y),

Sω(x + y) = Sω(x)Cω(y) + Cω(x)Sω(y),

C ′
ω(x) = −ωSω(x), S ′

ω(x) = Cω(x).

(4.4)

A simultaneous standard deformation for all the enveloping algebras U(soω1,ω2(3)) was
introduced in [15], The particular case of the deformed Hopf algebras Uλ(isoω(2)) is obtained
taking ω1 = 0 and, obviously, ω2 = ω.

It was proved in [19] that the standard quantum Hopf algebras Uλ(isoω2,ω3,...,ωN
(N))

have a bicrossproduct structure. So, Uλ(isoω(2)) is characterized in a basis adapted to its
bicrossproduct structure by

[J, P1] = 1 − e−2λP2

2λ
+

1

2
λωP 2

1 , [J, P2] = −ωP1;
�(P1) = P1 ⊗ 1 + e−λP2 ⊗ P1,

�(P2) = P2 ⊗ 1 + 1 ⊗ P2, �(J ) = J ⊗ 1 + e−λP2 ⊗ J ;
ε(P1) = ε(P2) = ε(J ) = 0;
S(P1) = −eλP2P1, S(P2) = −P2, S(J ) = −eλP2J.

The bicrossproduct structure Uλ(isoω(2)) = K 
� L, where L is the Hopf subalgebra
spanned by (P1, P2) and K is the commutative and cocommutative Hopf algebra generated by
J , is determined by the action of K on L given by

P1  J = [P1, J ] = −
[

1 − e−2λP2

2λ
+

1

2
λωP 2

1

]
, P2  J = [P2, J ] = ωP1, (4.5)

and the left coaction of L on K, which over the generator of K takes the value

J �= e−λP2 ⊗ J. (4.6)

The dual algebra Fλ(ISOω(2)) is generated by the local coordinates ϕ, a1, a2. Its
commutators, coproduct, counit and antipode are given by

[a1, ϕ] = λ(1 − Cω(ϕ)), [a2, ϕ] = λSω(ϕ), [a1, a2] = λa1;
�(a1) = a1 ⊗ Cω(ϕ) + a2 ⊗ ωSω(ϕ) + 1 ⊗ a1,

�(a2) = −a1 ⊗ Sω(ϕ) + a2 ⊗ Cω(ϕ) + 1 ⊗ a2,

�(ϕ) = ϕ ⊗ 1 + 1 ⊗ ϕ; (4.7)

ε(a1) = ε(a2) = ε(ϕ) = 0;
S(a1) = −Cω(ϕ)a1 − ωSω(ϕ)a2, S(a2) = Sω(ϕ)a1 − Cω(ϕ)a2, S(ϕ) = −ϕ.

This Hopf algebra exhibits the bicrossproduct structure Fλ(ISOω(2)) = K∗ � L∗, dual of the
one above, with K∗ generated by ϕ and L∗ by a1, a2. The left action of L∗ over K∗ is given by

a1 
 ϕ = λ(1 − Cω(ϕ)), a2 
 ϕ = λSω(ϕ). (4.8)
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The right coaction of K∗ over L∗ takes the following values over the generators of L∗:

� a1 = a1 ⊗ Cω(ϕ) + a2 ⊗ ωSω(ϕ), � a2 = −a1 ⊗ Sω(ϕ) + a2 ⊗ Cω(ϕ). (4.9)

The results mentioned in the last paragraph of section 2 dealing with dual bases and ∗-
structures over bicrossproduct Hopf algebras allow one to construct a pair of dual bases in such
a way that the duality form between Uλ(isoω(2)) and Fλ(ISOω(2)) is

〈JmP n
1 P

p

2 , ϕqar
1a

s
2〉 = m!n!p!δq

mδr
nδ

s
p. (4.10)

5. Representations of Uλ(isoω(2))

Firstly, according to the theory of representations of bicrossproduct algebras displayed in
section 3 and, in particular, theorem 3.2, we need to know the flow associated with the action
of K on L.

5.1. One-parameter flow for Uλ(isoω(2))

In [19] the factor K is interpreted as the enveloping algebra U(soω(2)), while L is seen as a
deformation of the algebra of the group of the translations in the plane T2, Uλ(t2). Hence,

Uλ(isoω(2)) = U(soω(2)) 
�Uλ(t2), Fλ(ISOω(2)) = F(SOω(2)) � Fλ(T2). (5.1)

However, our interpretation given here is different since

Uλ(isoω(2)) = U(soω(2)) 
�F(Tλ,2), (5.2)

where Tλ,2 denotes the Lie group with composition law

(α′
1, α

′
2)(α1, α2) = (α′

1 + e−λα′
2α1, α

′
2 + α2). (5.3)

Now the generators P1 and P2 are considered as a global coordinate system over Tλ,2, i.e.

P1(α1, α2) = α1, P2(α1, α2) = α2. (5.4)

The module algebra structure included in Uλ(isoω(2)) = U(soω(2)) 
�F(Tλ,2) determines
the action of SOω(2) over Tλ,2 by means of the vector field

Ĵω,λ = −
[

1 − e−2λP2

2λ
+

1

2
λωP 2

1

]
∂

∂P1
+ ωP1

∂

∂P2
. (5.5)

Prior to determining the flow associated with Ĵω,λ we can obtain a first qualitative
information by identifying the fixed points of Ĵω,λ. When ω �= 0 only the origin (0, 0) is
an equilibrium point, but if ω = 0 the set of fixed points is the straight line of equation α2 = 0.
The deformation due to λ does not change the character of these points. Thus, the point is
elliptic if ω > 0 and hyperbolic if ω < 0.

The one-form

ηρ = ρ

[
ωP1 dP1 +

(
1 − e−2λP2

2λ
+

1

2
λωP 2

1

)
dP2

]
, ρ ∈ F(Tλ,2), (5.6)

verifies Ĵω,λ�ηρ = 0. Taking ρ0 = λ2eλP2 one obtains that ηρ0 is exact and invariant under
Ĵω,λ. Adding a constant and rescaling the invariant function under the action of J

h = 1

2
ωλ2P 2

1 eλP2 + cosh(λP2), (5.7)

we obtain a central element of Uλ(isoω(2))

Cω,λ = ωP 2
1 eλP2 + 2

cosh(λP2) − 1

λ2
= ωP 2

1 eλP2 +
4

λ2
sinh2

(
λ

2
P2

)
(5.8)

such that in the limit λ → 0 we recover the nondeformed Casimir Cω,0 = ωP 2
1 +P 2

2 of isoω(2).
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The computation of the trajectories of Ĵω,λ requires one to solve the equation system

α̇1 = −
[

1 − e−2λα2

2λ
+

1

2
λωα2

1

]
,

α̇2 = ωα1.

(5.9)

The integral curve γ can be expressed as

α1(t) = −1

λ

sinh(λβ)Sω(t)

cosh(λβ) + sinh(λβ)Cω(t)
,

α2(t) = 1

λ
ln[cosh(λβ) + sinh(λβ)Cω(t)].

(5.10)

Using the fact that �t
ω,λ(γ (τ )) = γ (τ + t) the flow can be evaluated

�t
ω,λ(α1, α2) =

(
{2α1λeλα2 Cω(t) + (ωλ2α2

1eλα2 − sinh(λα2))Sω(t)}

× {2λ cosh(λα2) + ωλ3α2
1eλα2 + (2λ sinh(λα2) − ωλ3α2

1eλα2)Cω(t)

+ 2ωλ2α1eλα2 Sω(t)}−1,
1

λ
ln

[
cosh(λα2) +

1

2
ωλ2α2

1eλα2

+ (sinh(λα2) − 1
2ωλ2α2

1eλα2)Cω(t) + ωλα1eλα2 Sω(t)

])
. (5.11)

In the limit λ → 0 we recover the linear flow

�t
ω,0(α1, α2) = (Cω(t)α1 − Sω(t)α2, ωSω(t)α1 + Cω(t)α2), (5.12)

which corresponds to the nondeformed action given by the vector field Ĵω,0 = −P2∂P1 +ωP1∂P2 .
Note that although expression (5.11) has been obtained for ω > 0 and λ > 0 it can be

proved that it is also valid for the remaining values. In some sense, the flow has an ‘analytic’
dependence on the parameters ω and λ, which allows one to extend the results obtained in a
region of the parameters space to the whole of it.

The flow (5.11) is globally defined when ω � 0 but is only local for ω < 0 as it is
easy to prove considering the integral curve passing through a point such as (0, α2): since the
logarithm argument has to be positive one obtains the inequality

cosh(λα2) + sinh(λα2)Cω(t) > 0, (5.13)

if the product λα is negative the definition interval of t is bounded

t ∈ (−C−1
ω (− coth(λα2)), C−1

ω (− coth(λα2))). (5.14)

The flow (5.11) describes the action of SOω(2) over Tλ,2

etJ 
 (α1, α2) = �t
λ,ω(α1, α2), (5.15)

which decomposes the space Tλ,2 on the strata of orbits depending on the values of ω:

• Case ω < 0
∗ A stratum with only one orbit with only one point: (0, 0). The isotropy group is

SOω(2).
∗ Four orbits determined by the points(

1 − e−λ

λ
√−ω

, 1

)
,

(
1 − eλ

λ
√−ω

, −1

)
,

(
−1 − e−λ

λ
√−ω

, 1

)
,(

− 1 − eλ

λ
√−ω

, −1

)
.

(5.16)

These orbits are isomorphic to R and have the point (0, 0) as an accumulation point.
∗ The remaining points of Tλ,2 constitute another stratum fibred by orbits diffeomorphic

to R since they are branches of deformed hyperbolae.
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• Case ω = 0
∗ A stratum is constituted by the points (α1, 0), each of them is an orbit.
∗ The orbits {(α1, α2)|α1 ∈ R, α2 �= 0 but fixed} determine a stratum.

• Case ω > 0
∗ The point (0, 0) constitutes the only orbit of this stratum.
∗ The orbits diffeomorphic to the circle determine another stratum.

Note that the deformation associated with λ does not give qualitative changes with respect
to the nondeformed case. Summarizing, we can say that the quotient spaces are isomorphic:

Tλ,2/SOω(2) � T0,2/SOω(2). (5.17)

5.2. Regular co-spaces

Once the flow associated with the bicrossproduct structure of Uλ(isoω(2))) is known,
we can study the regular co-spaces (Fλ(ISOω(2)), ≺, Uλ(isoω(2))) and (Fλ(ISOω(2)),
�, Uλ(isoω(2))), which are basic elements characterizing the induced representations of
Uλ(isoω(2))).

The structures of both co-spaces are easily deduced combining theorem 3.3 with
expression (5.11) of the flow of Ĵ . Firstly, remember that (Fλ(ISOω(2)) can be described by
elements of the form

φ(α1, α2), φ ∈ F(SOω(2)), (α1, α2) ∈ Tλ,2, (5.18)

instead of monomials ϕqar
1a

s
2.

(1) For the right coregular module (Fλ(ISOω(2)), ≺, Uλ(isoω(2))) we have that

[φ(α1, α2)] ≺ etJ = φ(etJ ·)(α1, α2),

[φ(α1, α2)] ≺ P1 = φ{2α1λeλα2 Cω(ϕ) + (ωλ2α2
1eλα2

− 2 sinh(λα2))Sω(ϕ)}{2λ cosh(λα2) + ωλ3α2
1eλα2) + (2λ sinh(λα2)

− ωλ3α2
1eλα2)Cω(ϕ) + 2ωλ2α1eλα2 Sω(ϕ)}−1(α1, α2),

[φ(α1, α2)] ≺ P2 = φ
1

λ
ln

[
cosh(λα2) +

1

2
ωλ2α2

1eλα2 +

(
sinh(λα2) − 1

2
ωλ2α2

1eλα2

)
Cω(ϕ)

+ ωλα1eλα2 Sω(ϕ)

]
(α1, α2).

The dot stands for the argument of the function φ = φ(·). Developing in power series of t and
considering the first order in the first expression and the multiplication and derivation operators
associated with the basis ϕqar

1a
s
2 we can write the action of the generators of Uλ(isoω(2)) over

an arbitrary ‘function’ f ∈ Fλ(ISOω(2)) only making the changes

ϕ → ϕ̄, ai → ∂

∂ai

≡ ∂ai
. (5.19)

In this way we obtain

f ≺ J = ∂ϕf,

f ≺ P1 =
{

2λ∂a1 eλ∂a2 Cω(ϕ̄) +

(
ωλ2 ∂2

∂a2
1

eλ∂a2 − 2 sinh(λ∂a2)

)
Sω(ϕ̄)

}

×
{

2λ cosh(λ∂a2) + ωλ3 ∂2

∂a2
1

eλ∂a2 +

(
2λ sinh(λ∂a2) − ωλ3 ∂2

∂a2
1

eλ∂a2

)
Cω(ϕ̄)

+ 2ωλ2∂a1 eλ∂a2 Sω(ϕ̄)

}−1

f,



8462 O Arratia and M A del Olmo

f ≺ P2 = 1

λ
ln

[
cosh(λ∂a2) +

1

2
ωλ2 ∂2

∂a2
1

eλ∂a2 +

(
sinh(λ∂a2) − 1

2
ωλ2 ∂2

∂a2
1

eλ∂a2

)
Cω(ϕ̄)

+ ωλ∂a1 eλ∂a2 Sω(ϕ̄)

]
f.

From the above result the action of the generator J over the ordering monomials ϕqar
1a

s
2 is

easily evaluated:

(ϕqar
1a

s
2) ≺ J = qϕq−1ar

1a
s
2, (5.20)

but this is not the case with P1 and P2, except in the nondeformed case where the action reduces
to

f ≺ P1 =
(

Cω(ϕ̄)
∂

∂a1
− Sω(ϕ̄)

∂

∂a2

)
f, f ≺ P2 =

(
ωSω(ϕ̄)

∂

∂a1
+ Cω(ϕ̄)

∂

∂a2

)
f.

(5.21)

So, when λ = 0 one obtains

(ϕqar
1a

s
2) ≺ P1 = rϕqCω(ϕ)ar−1

1 as
2 − sϕqSω(ϕ)ar

1a
s−1
2 ,

(ϕqar
1a

s
2) ≺ P1 = ωrϕqSω(ϕ)ar−1

1 as
2 + sϕqCω(ϕ)ar

1a
s−1
2 .

(5.22)

(2) The description of the left coregular module (Fλ(ISOω(2)), �, Uλ(isoω(2))) is
performed in an analogous way. Firstly, considering theorem 3.3 one obtains

etJ � [φ(α1, α2)] = φ(·etJ )

(
{2λα1eλα2 Cω(t) + (ωλ2α2

1eλα2 − 2 sinh(λα2))Sω(t)}

× {2λ cosh(λα2) + ωλ3α2
1eλα2 + (2λ sinh(λα2) − ωλ3α2

1eλα2)Cω(t)

+ 2ωλ2α1eλα2 Sω(t)}−1,
1

λ
ln

[
cosh(λα2) +

1

2
ωλ2α2

1eλα2

+
(

sinh(λα2) − 1
2ωλ2α2

1eλα2
)
Cω(t) + ωλα1eλα2 Sω(t)

])
,

P1 � [φ(α1, α2)] = α1φ(α1, α2),

P2 � [φ(α1, α2)] = α2φ(α1, α2).

With the same arguments in the case of the right regular co-space the action of the
generators can be written in terms of the multiplication and derivation operators

J � f =
[

∂

∂ϕ
− ā1

1 − e−2λ ∂
∂a2

2λ
+ ωā2

∂

∂a1
− λ

2
ωā1

∂2

∂a2
1

]
f,

Pi � f = ∂

∂ai

f, i = 1, 2,

(5.23)

which allows one to obtain the action of the generators over the basis ϕqar
1a

s
2

J � (ϕqar
1a

s
2) = qϕqar

1a
s−1
2 − λ

2
ωr(r − 1)ϕqar−1

1 as
2 + ωrϕqar−1

1 as+1
2

− 1

2λ
ϕqar+1

1 as
2 +

1

2λ
ϕqar+1

1 (a2 + 2λ)ssϕqar
1a

s−1
2 ,

P1 � (ϕqar
1a

s
2) = rϕqar−1

1 as
2,

P2 � (ϕqar
1a

s
2) = sϕqar

1a
s−1
2 .

(5.24)



Induced representations of quantum kinematical algebras and quantum mechanics 8463

The subalgebra Aω,λ = 〈a1, a2〉 of Fλ(ISOω(2)), which is not a Hopf subalgebra, is stable
under the previous action. The explicit action of the generators of Uλ(isoω(2)) over a generic
element ψ(a1, a2) of Aω,λ in terms of operators adapted to the basis ar

1a
s
2 is

J 
 ψ(a1, a2) =
(

−ā1
1 − e−2λ ∂

∂a2

2λ
+ ωā2

∂

∂a1
− λ

2
ωā1

∂2

∂a2
1

)
ψ(a1, a2),

Pi 
 ψ(a1, a2) = ∂

∂ai

ψ(a1, a2), i = 1, 2.

(5.25)

The generators a1 and a2 of the co-space (Aω,λ, 
, Uλ(isoω(2))) verify the commutation
relation

[a1, a2] = λa1 (5.26)

defining a noncommutative geometry except in the nondeformed limit where the corresponding
classical geometries are recovered.

The action of the Casimir (5.8) of Uλ(isoω(2)) on (Aω,λ, 
, Uλ(isoω(2))) is given by

Cω,λ 
 f (a1, a2) =
[
ω

∂2

∂a2
1

eλ ∂
∂a2 +

4

λ2
sinh2

(
λ

2

∂

∂a2

)]
f (a1, a2), (5.27)

or explicitly

Cω,λ 
 f (a1, a2) = ω
∂2

∂a2
1

f (a1, a2 + λ) +
1

λ2
[f (a1, a2 + λ) + f (a1, a2 − λ) − 2f (a1, a2)].

(5.28)

This last expression shows the effect of the deformation transforming one of the derivatives
on a finite difference operator.

An interesting problem is the solution of the wave equations associated with this two-
parameter family of Casimir operators (in this context see, for instance [35] and references
therein). Considering the group Tλ,2 included inside Aω,λ by means of the exponential map,
the action of the Casimir over the elements (α1, α2) ∈ Tλ,2 is given by

Cω,λ 
 (α1, α2) =
[
ωα2

1eλα2 +
4

λ2
sinh2

(
λ

2
α2

)]
(α1, α2), (5.29)

which suggests interpreting (α1, α2) as a ‘plane wave’.

5.3. Representations of Uλ(isoω(2))

The representation induced by the character of L
1 � (P

n1
1 P

n2
2 ) = α

n1
1 α

n2
2 (5.30)

(or, in other words, the representation induced by (α1, α2) ∈ Tλ,2) is obtained as follows.
Theorem 3.4 gives the following result for the action of the generators in the induced
representation

φ � J = φ′,
φ � P1 = φ{2λα1eλα2 Cω(ϕ) + (ωλ2α2

1eλα2 − 2 sinh(λα2))Sω(ϕ)}{2λ cosh(λα2

+ 2ωλ3α2
1eλα2 + (2λ sinh(λα2) − ωλ3α2

1eλα2)Cω(ϕ) + 2ωλ2α1eλα2 Sω(ϕ)}−1,

φ � P2 = φ
1

λ
ln

[
cosh(λα2) +

1

2
ωλ2α2

1eλα2

+ (sinh(λα2) − 1
2ωλ2α2

1eλα2)Cω(ϕ) + ωλα1eλα2 Sω(ϕ)

]
.
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In the limit λ → 0 we recover the more familiar expressions

φ � J = φ′,
φ � P1 = φ(α1Cω(ϕ) − α2Sω(ϕ)),

φ � P2 = φ(ωα1Sω(ϕ) + α2Cω(ϕ)).

(5.31)

The local representations obtained inducing with the character of U(soω(2)) given by

Jm � 1 = cm, (5.32)

are

etJ � (α1, α2) = etc

(
{2λα1eλα2 Cω(t) + (ωλ2α2

1eλα2 − 2 sinh(λα2))Sω(t)}

× {2λ cosh(λα2) + ωλ3α2
1eλα2 + (2λ sinh(λα2) − ωλ3α2

1eλα2)Cω(t)

+ 2ωλ2α1eλα2 Sω(t)}−1,
1

λ
ln

[
cosh(λα2) +

1

2
ωλ2α2

1eλα2

+ (sinh(λα2) − 1
2ωλ2α2

1eλα2)Cω(t) + ωλα1eλα2 Sω(t)

])
,

Pi � (α1, α2) = αi(α1, α2), i = 1, 2,

which can be written in an equivalent way using an arbitrary element, ψ(a1, a2), of U(tλ,2),
as

J � ψ(a1, a2) =
[
c − ā1

1 − e−2λ ∂
∂a2

2λ
+ ωā2

∂

∂a1
− λ

2
ωā1

∂2

∂a2
1

]
ψ(a1, a2),

Pi � ψ(a1, a2) = ∂

∂ai

ψ(a1, a2), i = 1, 2.

(5.33)

Notice that if we take c = 0, which is equivalent to considering the character determined by
the counit of U(soω(2)), the action (5.25) of the co-space (Aω,λ, 
, Uλ(isoω(2))) is recovered.

The Casimir action for the local representation coincides with those given by (5.27) since
only the generators Pi are presented.

It is also worth noting that in this case in the limit λ → 0 we obtain

J � ψ(a1, a2) =
[
c − a1

∂

∂a2
+ ωa2

∂

∂a1

]
ψ(a1, a2),

Pi � ψ(a1, a2) = ∂

∂ai

ψ(a1, a2), i = 1, 2,

(5.34)

which it is in agreement with the results for local representations [36].

6. Concluding remarks

The induction procedure that we have used here is not, strictly speaking, a generalization
of Mackey’s induction method for Lie groups. The concept of co-space generalizes in an
algebraical way the concept of G-space (G being a transformation group) and is connected
with the induced representations in some sense similar to the nondeformed case. In [6] we
presented a more general method that, obviously, can also be used for bicrossproduct algebras.
In [6] the knowledge of pairs on the dual basis of the corresponding Hopf algebra and its dual
is required, however, in the method used in this work this requirement is not necessary.

We have made use of the vector fields to compute commutators. For bicrossproduct Hopf
algebras, as used in this work H = K 
� L, there is a connection between the representations
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of H induced by the characters of L and one-parameter flows. This relation allows one
to associate with quantum bicrossproduct groups dynamical systems. Here we have only
sketched the situation that is to be analysed in greater detail in [37].

The equations associated with the Casimir operators, as in the nondeformed case, will
give the behaviour of the ‘deformed’ quantum systems. A procedure for this solution can be
found in [35]. Note that q-special polynomials and q-functions may appear as solutions of
these q-Casimir equations.

From the point of view of applications the physics of unitarity representations is an
important question. To discuss this problem it is necessary to fix a ∗-structure on the Hopf
algebra and a scalar product on the vector space that supports the representation. Following
the method described in section 2 we can select the standard ∗-structures on the factors of
H = U(k) 
�F(L) to get a ∗-structure on the algebra sector of H . Then, the first expression
in (3.27) says that the induced action of group-like elements k ∈ U(k) ⊂ H is nothing other
than the (right-) regular one and henceforth, to ensure unitarity, we have to choose the Hilbert
space structure on F(K) corresponding to the Haar measure on K . On the other hand, from
second formula in (3.27) we see that elements λ ∈ F(K) ⊂ H act by means of a multiplicative
factor. Therefore, to be consistent with the ∗-structure, the deformation parameter must be
real but this choice leads to an unsolved problem: some divergent factors arise due to the local
character of the action of K on L which only turns out to be global for vanishing deformation
parameter values.

The equivalence of the induced representations is given by theorem 3.4, which establishes
a correspondence between classes of induced representations and orbits of L under the action
of K . This result is analogous to the Kirillov orbits method [38].

The problem of the irreducibility of the representations is still open. Partial results for
particular cases have been obtained (see [4] for the (1 + 1) κ-Galilei algebra and [33] for the
quantum extended (1 + 1) Galilei algebra).
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